Efficacy and Safety of Vutrisiran in ATTR-CM Across the Spectrum of Age

Awais Sheikh¹, Zi Michael Miao², Brian Claggett², Pablo Garcia-Pavia³, Francesco Cappelli⁴, Emre Aldinc⁵, Julian Gillmore¹, Scott D. Solomon², Marianna Fontana¹

¹National Amyloidosis Centre, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK

²Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

³Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, and Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, Spain

⁴Tuscan Regional Amyloid Center, Careggi University Hospital, Florence, Italy

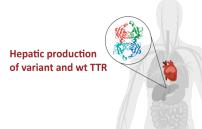
⁵Alnylam Pharmaceuticals, Cambridge, MA

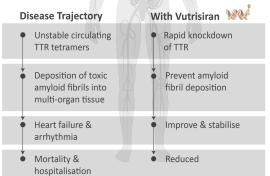
Disclosures

Mass General Brigham

- Study funded by Alnylam Pharmaceuticals
- No relevant personal disclosures

Background


ATTR cardiomyopathy


- Results from accumulation of wild-type or variant TTR amyloid fibrils in the heart¹⁻⁵
- Leads to progressive heart failure, with significant morbidity and mortality

Heart failure treatment in elderly patients

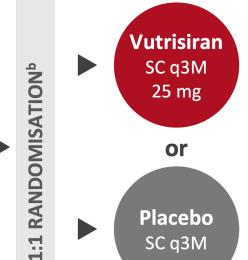
- Older adults face disproportionate burden of disease
- Higher risk of death and hospitalisations⁶
- Concerns over frailty, polypharmacy leads to lower use of guideline-directed medical therapy (GDMT)

Therapeutic Hypothesis Vutrisiran targets both variant and wt TTR

Aim of the study

- Vutrisiran, a recently approved RNAi therapeutic, was evaluated in patients with ATTR-CM in the HELIOS-B study (NCT04153149). It provided **significant benefits** in the **primary and all secondary endpoints**
- To determine whether the benefits of vutrisiran extend consistently across all age groups including patients ≥80 years

HELIOS-B study design



- ATTR: wild-type or any TTR variant
- Confirmed cardiomyopathy and medical history of symptomatic HF
- NYHA Class ≤III; 6-MWT ≥150 m; NT-proBNP limits^a at baseline
- Approximately 40% of patients on tafamidis at baseline

Select Exclusion Criteria:

- NYHA Class IV HF
- PND Score ≥III at the screening visit
- Received prior TTR lowering treatment


Primary Endpoints

- Composite outcome of all-cause mortality and recurrent CV events during double-blind (DB) period (Month 33-36) in:
 - Overall population
 - Monotherapy population (patients not on tafamidis at baseline)

Secondary Endpoints^c

- Change from BL to Month 30 in 6-MWT distance
- Change from BL to Month 30 in KCCQ-OS
- All-cause mortality through 42 Months
- Change from BL to Month 30 in NYHA class

Placebo

SC q3M

aNT-proBNP levels of >300 pg/mL and <8500 pg/mL (or >600 pg/mL and <8500 pg/mL for patients with atrial fibrillation).

PRandomisation was stratified according to the use of tafamidis at baseline (yes versus no), ATTR disease type (hATTR), and NYHA class and age at baseline (NYHA class I or II and age <75 years versus all others). ^cAssessed in the overall population and monotherapy population as separate endpoints.

Methods

Endpoints assessed using age categories (<75, 75 to <80 and ≥80 years) and age as a continuous variable (using restricted cubic splines), in both overall and monotherapy populations (patients not receiving tafamidis at baseline)

Primary endpoint

Composite endpoint of all-cause mortality and recurrent CV events during double-blind period (Month 33-36)

Components of the composite primary endpoint

Recurrent CV events

Secondary endpoints

- All-cause mortality through 42 months
- Change from BL to Month 30 in 6-MWT distance
- Change from BL to Month 30 in KCCQ-OS

Other endpoints

- Composite of all-cause mortality or first CV event
- Safety endpoints (SAEs, discontinuations)

Baseline characteristics

Baseline characteristics by age categories – Overall (trend-p)

Baseline characteristics by age categories - Monotherapy (trend-p)

	< 75 75 to < 80 (n=257) (n=201)		≥ 80	P value	< 75 (==152)	75 to < 80	≥ 80	P value		
	(n=257)	(n=201)	(n=196)		(n=153)	(n=105)	(n=137)			
Baseline Characteristics										
Age	68.7 ± 5.4	77.2 ± 1.4	82.2 ± 1.8	p<0.001	69.2 ± 5.2	77.2 ± 1.3	82.2 ± 1.8	p<0.001		
Sex	233 (90.7%)	191 (95.0%)	181 (92.3%)	p=0.43	137 (89.5%)	100 (95.2%)	124 (90.5%)	p=0.73		
Wild-Type ATTR	208 (80.9%)	183 (91.0%)	187 (95.4%)	p<0.001	121 (79.1%)	97 (92.4%)	129 (94.2%)	p<0.001		
Baseline Tafamidis Use	104 (40.5%)	96 (47.8%)	59 (30.1%)	p=0.044		10 S				
NYHA Class I	34 (13.2%)	26 (12.9%)	24 (12.2%)	p=0.84	7 (4.6%)	9 (8.6%)	11 (8.0%)	p=0.75		
NYHA Class II	199 (77.4%)	155 (77.1%)	154 (78.6%)		137 (89.5%)	89 (84.8%)	115 (83.9%)			
NYHA Class III	24 (9.3 %)	20 (10.0%)	18 (9.2 %)		9 (5.9%)	7 (6.7%)	11 (8.0%)			
NAC Stage 1	183 (71.2%)	134 (66.7%)	120 (61.2%)		105 (68.6%)	65 (61.9%)	81 (59.1%)	p=0.08		
NAC Stage 2	66 (25.7%)	58 (28.9%)	63 (32.1%)	p=0.018	42 (27.5%)	34 (32.4%)	47 (34.3%)			
NAC Stage 3	8 (3.1 %)	9 (4.5 %)	13 (6.6 %)		6 (3.9%)	6 (5.7%)	9 (6.6%)			
Biomarkers										
NT-proBNP at Baseline	1649 [903-	2062 [1138-3083]	2330 [1340-3742]	p<0.001	1763 [1029, 3194]	2199 [1258, 3455]	2481 [1325, 4056]	p=0.018		
(ng/L)	2990]									
Troponin I (ng/L), Serum	63.1 [39.3- 93.2]	68.6 [41.1-120.7]	73.8 [47.3-121.6]	p=0.013	63.9 [43.3, 104.8]	74.6 [39.0, 133.7]	71.8 [43.3, 126.3]	p=0.17		
6MWT	409.9 ± 99.9	369.2 ± 94.0	333.9 ± 89.5	P<0.001	404.3 ± 100.7	369.7 ± 96.5	325.6 ± 86.4	P<0.001		

Contemporary population with baseline characteristics balanced across arms

Baseline characteristics

6MWT 409.9 ± 99.9

 369.2 ± 94.0

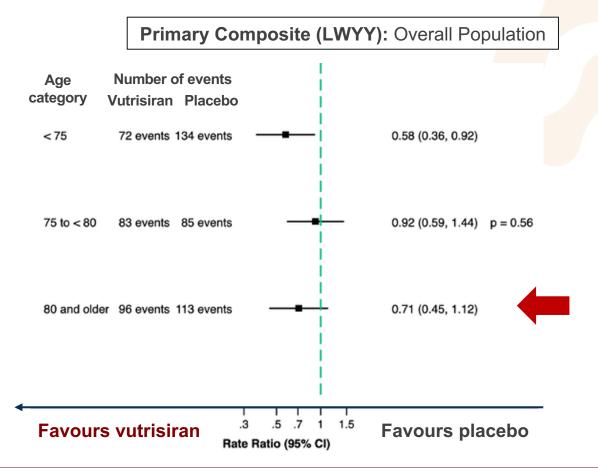
P<0.001

Baseline characteristics by age categories - Overall (trend-p)					Baseline characteristics by age categories - Monotherapy (trend-p)				
	< 75 (n=257)	75 to < 80 (n=201)	≥ 80 (n=196)	P value	< 75 (n=153)	75 to < 80 (n=105)	≥ 80 (n=137)	P value	
Baseline Characteristics									
Age	68.7 ± 5.4	77.2 ± 1.4	82.2 ± 1.8	p<0.001	69.2 ± 5.2	77.2 ± 1.3	82.2 ± 1.8	p<0.001	
Sex	233 (90.7%)	191 (95.0%)	181 (92.3%)	p=0.43	137 (89.5%)	100 (95.2%)	124 (90.5%)	p=0.73	
Wild-Type ATTR	208 (80.9%)	183 (91.0%)	187 (95.4%)	p<0.001	121 (79.1%)	97 (92.4%)	129 (94.2%)	p<0.001	
Baseline Tafamidis Use	104 (40.5%)	96 (47.8%)	59 (30.1%)	p=0.044					
NYHA Class I	34 (13.2%)	26 (12.9%)	24 (12.2%)	p=0.84	7 (4.6%)	9 (8.6%)	11 (8.0%)	p=0.75	
NYHA Class II	199 (77.4%)	155 (77.1%)	154 (78.6%)		137 (89.5%)	89 (84.8%)	115 (83.9%)		
NYHA Class III	24 (9.3 %)	20 (10.0%)	18 (9.2 %)		9 (5.9%)	7 (6.7%)	11 (8.0%)		
NAC Stage 1	183 (71.2%)	134 (66.7%)	120 (61.2%)		105 (68.6%)	65 (61.9%)	81 (59.1%)	p=0.08	
NAC Stage 2	66 (25.7%)	58 (28.9%)	63 (32.1%)	p=0.018	42 (27.5%)	34 (32.4%)	47 (34.3%)	•	
NAC Stage 3	8 (3.1 %)	9 (4.5 %)	13 (6.6 %)	-	6 (3.9%)	6 (5.7%)	9 (6.6%)		
Biomarkers		270							
NT-proBNP at Baseline (ng/L)	1649 [903- 2990]	2062 [1138-3083]	2330 [1340-3742]	p<0.001	1763 [1029, 3194]	2199 [1258, 3455]	2481 [1325, 4056]	p=0.018	
Troponin I (ng/L), Serum	63.1 [39.3- 93.2]	68.6 [41.1-120.7]	73.8 [47.3-121.6]	p=0.013	63.9 [43.3, 104.8]	74.6 [39.0, 133.7]	71.8 [43.3, 126.3]	p=0.17	

Contemporary population with baseline characteristics balanced across arms

P<0.001

 404.3 ± 100.7


 369.7 ± 96.5

 325.6 ± 86.4

 333.9 ± 89.5

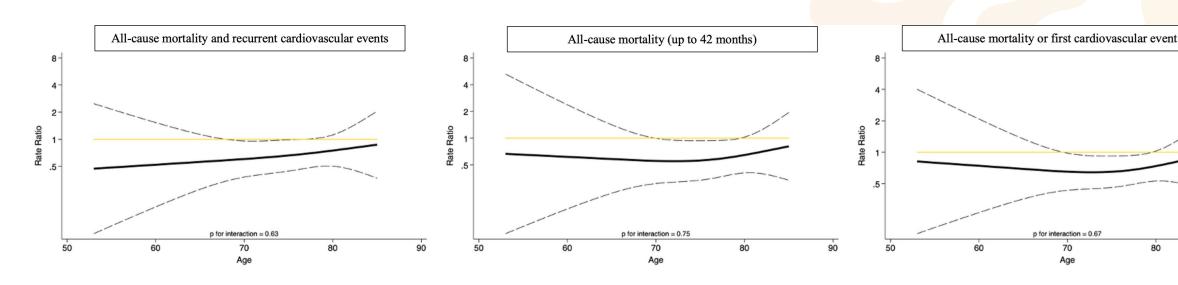
Primary endpoint All cause mortality and recurrent CV events

P for interaction 0.56

Consistent benefit across all age groups

Secondary endpoints in the overall population

		<75			75 to <80			≥80 years		
Endpoint	Vutrisiran (n=123)	Placebo (n=134)	Hazard ratio or rate ratio (95% CI)	Vutrisiran (n=98)	Placebo (n=103)	Hazard ratio or rate ratio (95% CI)	Vutrisiran (n=105)	Placebo (n=91)	Hazard ratio or rate ratio (95% CI)	Interaction P
Components of the composite primary endpoint	Events (/100py)		Ì	Events (/100py)		Events (/100py)				
Recurrent cardiovascular events	59 events [17.6/100py]	111 events [32.1/100py]	RR 0.57 (0.34-0.93),	67 events [25.1/100py]	69 events [25.5/100py]	RR 0.93 (0.59- 1.47)	74 events [28.3/100py]	83 events [36.8/100py]	RR 0.74 (0.43- 1.27)	0.50
Secondary endpoints	n (%) [events/100py]		n (%) [events/100py]			n (%) [eve				
All-cause mortality (up to 42 months)	16 (13%) [4.1/100py]	29 (22%) [7.1/100py]	HR 0.59 (0.32-1.09),	19 (19%) [6.1/100py]	24 (23%) [7.5/100py]	HR 0.73 (0.39- 1.34)	28 (27%) [9.2/100py]	37 (41%) [14.0/100py]	HR 0.62 (0.38- 1.02)	0.87
	Diffor	anaa in saara (050	/ CD	Differen	059	/ CD	Difform	noo in coore (059/	CD	
KCCQ-OSS change from baseline to month 30	Difference in score (95% CI) +5 (-0, +10)		Difference in score (95% CI) +2 (-4, +8)		Difference in score (95% CI) +9 (+3, +16)		CI)	0.35		
6MWT distance change from baseline to month 30		+22 (+4, +41)			+23 (+1, +46)			+23 (0, +46)		1.00


Vutrisiran reduced ACM and improved functional status and QoL across all age categories

Analysis using age as a continuous variable

Restricted cubic spline evaluating vutrisiran's efficacy as a continuous function of age in overall population

- Primary endpoint up to 36 months (left), ACM up to 42 months (middle), time to first event (ACM or first cardiovascular event; right).
- The solid black line represents the estimated HR for treatment effect at each age, and dashed lines indicate the 95% CI.
- The horizontal yellow line denotes the line of no effect (HR = 1.0).

Benefits across the spectrum of age

- Estimated treatment effect consistent across spectrum of age for primary and secondary endpoints
 - No attenuation of benefit with increasing age

Safety endpoints

AEs, SAEs and rates discontinuations in the overall population

	Age < 75		Age 75 to < 80		Age 80 and older		
	Placebo	Vutrisiran	Placebo	Vutrisiran	Placebo	Vutrisiran	Interaction
	n=134	n=123	n=103	n=98	n=91	n=105	p-value
Any treatment-emergent adverse event	131 (97.8%)	121 (98.4%)	102 (99.0%)	97 (99.0%)	90 (98.9%)	104 (99.0%)	p=0.86
Any treatment-emergent serious adverse event	87 (64.9%)	72 (58.5%)	67 (65.0%)	66 (67.3%)	66 (72.5%)	63 (60.0%)	p=0.53
Any treatment-emergent AE leading to trt disc	3 (2.2 %)	5 (4.1%)	6 (5.8 %)	3 (3.1%)	4 (4.4 %)	2 (1.9%)	p=0.19
Any treatment-emergent SAE leading to trt disc	3 (2.2 %)	3 (2.4%)	3 (2.9 %)	1 (1.0%)	4 (4.4 %)	1 (1.0%)	p=0.21

No increase in SAEs or discontinuations in older patients

• Safety profile remained favourable across age categories

Conclusions

Vutrisiran demonstrates consistent benefit across the spectrum of age – therefore, age <u>should not</u> be a barrier to offering an effective, disease modifying treatment

- Contemporary population with less advanced disease at baseline
- Vutrisiran associated with consistent clinical benefit across age categories
- In patients ≥80 years, vutrisiran reduced the incidence of the primary composite endpoint by 29%
- Similar findings across other key endpoints including functional capacity and quality of life
- **Discontinuation rates were low**, with no evidence of increased SAE across age categories

Acknowledgements

Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the HELIOS-B study

