Long-Term Effects of Lumasiran on Kidney Stones and Nephrocalcinosis in Patients With Primary Hyperoxaluria Type 1

<u>Gregory Tasian¹</u>, Jeffrey M. Saland², John C. Lieske³, Julien Hogan⁴, Yaacov Frishberg⁵, Martin Coenen⁶, Mary Callanan⁷, Cristin Kaspar⁷, Desmond Murphy⁷, and Sally-Anne Hulton⁸, on behalf of the study investigators

¹Children's Hospital of Philadelphia, Philadelphia, PA, USA; ²Icahn School of Medicine at Mount Sinai, New York, NY, USA; ³Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; ⁴Pediatric Nephrology Department, Hôpital Robert-Debré, APHP, Paris, France; ⁵Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel; ⁶Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; ⁷Alnylam Pharmaceuticals, Cambridge, MA, USA; ⁸Department of Nephrology, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK

Presented at: European Society for Paediatric Urology (ESPU) 2025; September 3-6, 2025; Vienna, Austria

Disclosures

Gregory Tasian: Scientific advisory board for Alnylam Pharmaceuticals and Novo Nordisk

Jeffrey M. Saland: Grants, personal fees, and nonfinancial support from Alnylam Pharmaceuticals

John C. Lieske: Grants from Alnylam Pharmaceuticals, Dicerna Pharmaceuticals, OxThera, Retrophin, and Siemens;

other from Arbor, NovoBiome, and Orfan-BridgeBio; grants and other from Allena and Synlogic

Julien Hogan: Consultant for Alnylam Pharmaceuticals and Traverse; travel fees from Biocodex; research grant from

CareDx

Yaacov Frishberg: Consultancy fees and membership in the safety review committee for Alnylam Pharmaceuticals

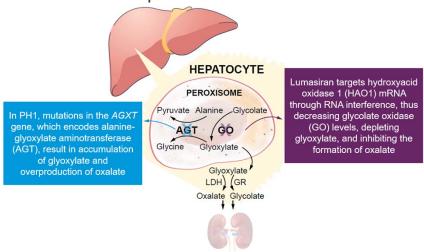
Martin Coenen: Nothing to disclose

Mary Callanan and Desmond Murphy: Employees of and shareholders in Alnylam Pharmaceuticals

Cristin Kaspar: Employee of Alnylam Pharmaceuticals

Sally-Anne Hulton: Travel expenses to participate in clinical research meetings, consultancy fee from advisory board, and consultancy fees paid to Birmingham Children's Hospital Renal Research Fund from Alnylam Pharmaceuticals; other from Chiesi Pharmaceuticals

Acknowledgments: On behalf of the study investigators, thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the lumasiran clinical studies. Statistical support was provided by Richard Willey, MS, of Alnylam Pharmaceuticals. Medical writing and editorial assistance was provided by Peloton Advantage, LLC, an OPEN Health company, in accordance with Good Publication Practice (GPP 2022) guidelines and funded by Alnylam Pharmaceuticals.


Correspondence: Gregory Tasian – <u>TasianG@chop.edu</u>

Funding: This study was funded by Alnylam Pharmaceuticals

Data first presented at American Urological Association (AUA) Annual Meeting: April 26 - 29, 2025; Las Vegas, NV

Introduction

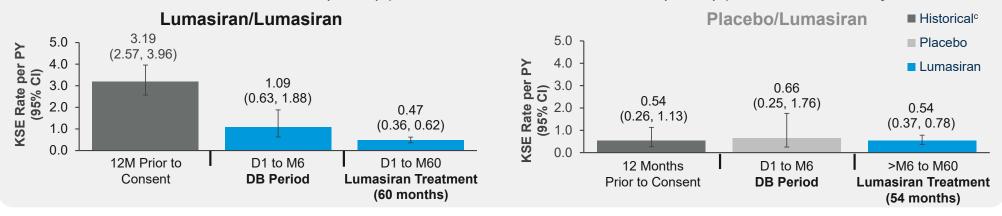
- Primary hyperoxaluria type 1 (PH1) is a rare genetic disorder associated with hepatic oxalate overproduction¹
- In patients with PH1, recurrent kidney stones are a major cause of morbidity, and nephrocalcinosis is associated with an increased risk of kidney failure^{2,3}
 - Pediatric patients with PH1 are characterized by presentation before adolescence (median: 3 years), nephrocalcinosis (43%), decreased eGFR at diagnosis (median: 52 mL/min/1.73m²), and calcium oxalate monohydrate stone composition (median: 100%)⁴
- Lumasiran, the first approved RNAi treatment for PH1 with the longest duration of efficacy data, effectively lowers urinary oxalate in pediatric and adult patients^{5,6}

AGT, alanine-glyoxylate aminotransferase; GO, glycolate oxidase; GR, glyoxylate reductase; LDH, lactate dehydrogenase; PH1, primary hyperoxaluria type 1; RNAi, ribonucleic acid interference.

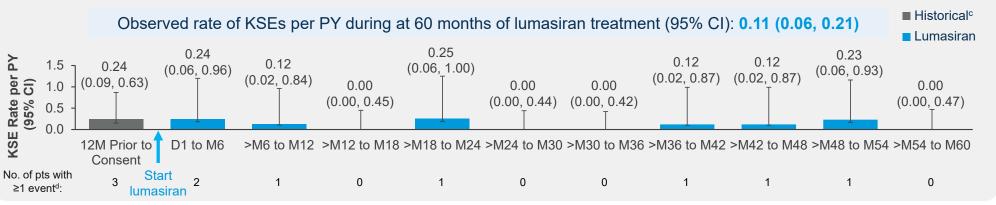
1. Cochat P, Rumsby G. N Engl J Med. 2013;369:649-658. 2. Milliner DS, et al. Primary Hyperoxaluria Type 1. GeneReviews 1993 [update Nov 30, 2017]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1283/. Accessed: January 11, 2022.

3. Danpure CJ. Primary hyperoxaluria. In: Valle DL, et al, eds. The Online Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill; 2019. doi:10.1036/ommbid. 4. Tasian Ge, et al. Distinguishing characteristics of pediatric patients with primary hyperoxaluria type 1 in PEDSnet. J Pediatr Urol. 2024 Feb;20(1):88.e1-88.e9. doi: 10.1016/j.jpurol.2023.10.001. 5. U.S. Food and Drug Administration. FDA Approves First Drug to Treat Rare Metabolic Disorder [press release]. 2020; www.fda.gov/news-events/press-announcements/fda-approves-first-drug-treat-rare-metabolic-disorder. Accessed January 12, 2022. 6. Oxlumo [package insert]. Cambridge, MA: Alnylam Pharmaceuticals; 2022.

Objective and Methods

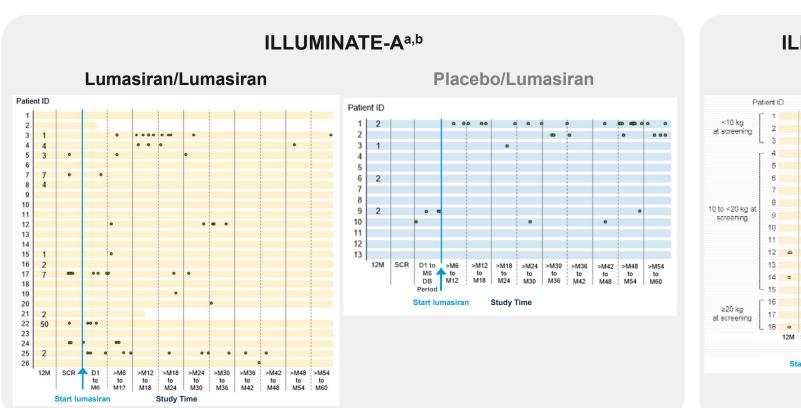

To evaluate long-term effects of lumasiran on kidney stone events (KSE) and nephrocalcinosis (NC) in patients with PH1

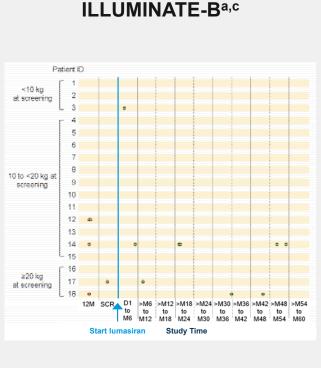
Study	Phase 3 ILLUMINATE-A N=39	Phase 3 ILLUMINATE-B N=18
Design	 Randomized, double-blind, placebo-controlled 6-month primary analysis 54-month extension period 	Single-arm, open-label6-month primary analysis54-month extension period
Patients	 PH1 Age ≥6 years eGFR ≥30 mL/min/1.73m² 	 PH1 Age <6 years eGFR >45 mL/min/1.73m^{2a}
Exploratory endpoints	KSE ratesMedullary NC grade	KSE ratesMedullary NC grade


- KSEs defined as any of the following: visit to healthcare provider because of a kidney stone, medication for renal colic, stone passage, gross hematuria due to a kidney stone
- Medullary NC in each kidney was graded on a validated, semiquantitative, standardized 4-point scale with a higher grade indicating greater severity¹
 - Kidney ultrasounds were graded centrally by a single radiologist blinded to timepoint (ILLUMINATE-A and ILLUMINATE-B) and treatment arm (ILLUMINATE-A)
 - o Data were available up to Month 60 (ILLUMINATE-A and ILLUMINATE-B)

Kidney Stone Event Rates in ILLUMINATE-A and ILLUMINATE-B

In ILLUMINATE-A^{a,b}, 21/39 (54%) patients had no KSEs; 7/39 (18%) patients had only 1 KSE





^aPost hoc analysis. ^bPatients in ILLUMINATE-A were not stratified by KSE history. ^cPatient-reported history of KSE. ^dA single patient had a single KSE noted beyond the M30 time point D, day; DB, double-blind; CI, confidence interval; KSE, kidney stone event; M, month; PY, patient-year.

Kidney Stone Events by Patient in ILLUMINATE-A and ILLUMINATE B

D, day; DB, double blind; KSE, kidney stone event; M, month; SCR, screening.

^aEach line represents 1 patient. Each data point indicates 1 KSE. The timing for historical events (prior 12 months) was not document. KSE portrayed for 12M and SCR are not drawn based on when each event occurred. The 12M and SCR data points are centered; other data points are plotted showing when they occurred during the period. ^bPatients were screened within 60 days prior to study drug administration. ^cWeight is at time of screening.

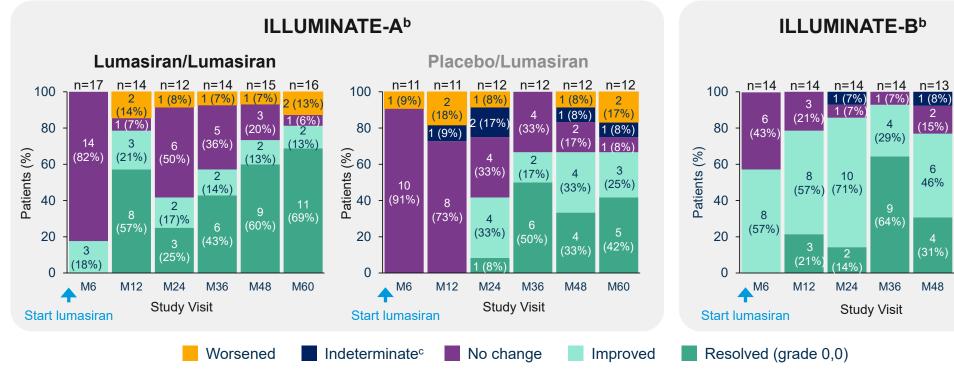
Nephrocalcinosis in ILLUMINATE-A and ILLUMINATE-B

- At 60 months, NC grade improved in a majority of patients who had NC at baseline^a
 - 21/28 (75%) patients in ILLUMINATE-A, 16 improved to grade 0 bilaterally
 - 12/14 (86%) patients in ILLUMINATE-B, 10 improved to grade 0 bilaterally
- In patients without NC (grade 0 bilaterally) at baseline, 7/7 (100%) in ILLUMINATE-A and 4/4 (100%) in ILLUMINATE-B had no change in NC grade at 60 months

(15%)

6

46%


(31%)

M48

(14%)

(71%)

M60

aln patients who had NC at baseline and an assessment at end of study bPost hoc analysis. Indicates improvement in one kidney and worsening in the other M, month; NC, nephrocalcinosis

Conclusions

- The majority of patients experienced 0 or 1 kidney stone events over long-term treatment of lumasiran
- Medullary nephrocalcinosis grade frequently improved in patients treated with lumasiran for 5 years in ILLUMINATE-A and ILLUMINATE-B
- A subset of patients exhibited complete resolution of nephrocalcinosis in ILLUMINATE-A and ILLUMINATE-B
- These are encouraging and clinically relevant trends that are consistent with the degree of urinary oxalate reduction while on lumasiran treatment

For US HCPs only Scan to view congress materials